Указания, решения, ответы

УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ

1. Уравнение с одной неизвестной

1.1. *Решение.* Подставим в уравнение $x = 1 + \sqrt{3}$. Получим равенство $(4a + b + 42) + (2a + b + 18)\sqrt{3} = 0$.

Равенство $A + B\sqrt{3} = 0$, где A и B - целые, выполняется, если B = 0.

Действительно, если $B \neq 0$, то $\sqrt{3} = -\frac{A}{B}$,

т.е. иррациональное число $\sqrt{3}$ оказалось равно рациональному, что невозможно. Таким образом, B=0, а следовательно, и A=0. Решая систему

$$\begin{cases} 4a+b+42=0\\ 2a+b+18=0, \end{cases}$$

находим a = -12, b = 6.

Ответ: a = -12, b = 6.

1.2. Найдите рациональные p и q при условии, что один из корней уравнения $x^2 + px + q = 0$ равен $1 + \sqrt{3}$.

Ответ: p = q = -2.

1.3. Может ли квадратное уравнение $ax^2 + bx + c = 0$ с целыми коэффициентами иметь дискриминант, равный 23?

Первое решение. Рассмотрим уравнение $b^2-4ac=23$. Так как 23 — нечетное число, а 4ac — четное, то b^2 и, следовательно, b — нечетное число, т.е. b=2k-1, $k\in \mathbb{Z}$. Тогда $(2k-1)^2-4ac=23$; $4(k^2-k-ac)=22$. Последнее уравнение не имеет решений, так как 22 не делится на 4.

Второе решение. Перепишем уравнение $b^2-4ac=23$ в виде $b^2-25=4ac-2$ и разложим обе части уравнения на множители: (b-5)(b+5)=2(2ac-1). (*) Так как в правой части уравнения – число четное, то и в левой – тоже четное, следовательно, b-5 и b+5 одновременно четные (докажите), т.е. b-5=2m, b-5=2k. Левая часть уравнения (*) делится на 4, а правая –

нет, поэтому уравнение $b^2 - 4ac = 23$ не имеет решений в целых числах.

Тремье решение. Перепишем уравнение $b^2 - 4ac = 23$ в виде $b^2 = 4ac + 23$ или $b^2 = 4(ac + 5) + 3$. Получили, что квадрат натурального числа при делении на 4 дает остаток 3, что невозможно (докажите).

Ответ: не может.

1.4. (2010). Каждый из двух различных корней квадратного трехчлена $f(x) = x^2 + (3a+10)x + 5b - 14$ и его значение при x = 1 являются простыми числами. Найдите a, b и корни трехчлена f(x).

Обозначим Решение. 3a+10=p, 5b-14 = q. Тогда значение трехчлена при x = 1 есть f(1) = 1 + p + q. Пусть x_1 и x_2 трехчлена, корни $x_1 < x_2$. Воспользовавшись формулами Виета $x_1 \cdot x_2 = q$ $x_1 + x_2 = -p$ запишем выражение f(1)и преобразуем $f(1) = 1 - (x_1 + x_2) + x_1x_2$ его, разложив правую часть множители:

$$f(1) = 1 - x_1 + x_2(x_1 - 1) = (x_1 - 1)(x_2 - 1).$$

Так как f(1), x_1 и x_2 по условию являются простыми числами, то числа x_1-1 и x_2-1 - натуральные и меньшее из них должно быть равно 1. Следовательно, $x_1-1=1$, откуда $x_1=2$. Тогда $f(1)=x_2-1$, т.е. x_2-1 и x_2 - два последовательных простых числа, что возможно только если этими числами являются 2 и 3. Итак, $x_2=3$, поэтому p=3a+10=-5, q=5b-14=6. Из двух последних равенств находим a=-5, b=4.

Ombem: a = -5, b = 4, $x_1 = 2$, $x_2 = 3$.

1.5. (2010). Квадратный трехчлен $f(x) = x^2 + px + q$ имеет два различных целых корня. Один из корней трехчлена и его значение в точке x = 11 являются простыми числами. Найдите корни трехчлена.

Ответ: 12; 13.

1.6. (2010). Найдите все такие целые a и b, что корни уравнения

$$x^{2} + (2a+9)x + 3b + 5 = 0$$

являются различными целыми числами, а коэффициенты 2a+9 и 3b+5 - простыми числами.

Решение. Обозначим корни квадратного уравнения через m и n. По теореме Виета mn=3b+5 - простое число, тогда $m=\pm 1$, $n=\pm (3b+5)$. Тогда $2a+9=\mp (3b+6)=\mp 3(b+2)$. Поэтому простое число 2a+9=3, откуда a=-3. Тогда b+2=1, т.е. b=-1.

Omeem: a = -3; b = -1.

2. Уравнения первой степени с двумя неизвестными

2.1. Решите уравнение 3x - 4y = 1 в целых числах.

Ombem: x = 4n + 3, y = 3n + 2, $n \in \mathbb{Z}$.

2.2. (2010). Найдите все целые решения уравнения 113x + 179y = 17, удовлетворяющие неравенствам x > 0, y + 100 > 0.

Решение. Воспользуемся методом, сходным с алгоритмом Евклида. Имеем 179 = 113 + 66. Перепишем уравнение в виде 113(x+y) + 66y = 17. Обозначим x+y=u,

113u + 66y = 17. Можно вновь 113 разделить на 66 с остатком, а лучше так: $113 = 2 \cdot 66 - 19$. Получаем

66(2u + y) - 19u = 17. Обозначим 2u + y = v, 66v - 19u = 17,

 $66 = 3 \cdot 19 + 9$. Получаем уравнение $19(3\upsilon - u) + 9\upsilon = 17$, $3\upsilon - u = \omega$;

 $19\omega + 9\upsilon = 17, \qquad 9(2\omega + \upsilon) + \omega = 17,$

 $2\omega + \upsilon = t$.

Наконец, получаем уравнение $9t + \omega = 17.9$ то уравнение имеет решение: $\omega = 17 - 9t$, где t – любое целое число. Проделываем обратные действия: $\upsilon = t - 2\omega = t - 34 + 18t = 19t - 34$,

 $u = 3v - \omega = 66t - 119$,

y = v - 2u = -113t + 204

x = u - y = 179t - 323. Таким образом, x = 179t - 323, y = -113t + 204, где t - 113t + 204

любое целое число. Из условия $x>0,\ y>-100,$ т.е. из системы $\begin{cases} 179t-323>0\\ -113t+204>-100 \end{cases}$ найдем t=2, затем $x=35;\ y=-22.$

Ombem: x = 35; y = -22.

3. Уравнения второй степени с двумя неизвестными

3.1. (МГУ, 2007). Найдите все целочисленные решения уравнения $x^2 - 14x + 4y^2 + 32y + 88 = 0$.

Указание. Уравнение приводится к виду $(x-7)^2 + 4(y+4)^2 = 25$.

Omsem: (12;-4); (2;-4); (10;-2); (4;-2); (10;-6); (4;-6).

3.2. Решите уравнение $xy - y^2 = x$ в целых числах.

Ответ: (0;0); (4;2).

3.3. (МФТИ, 2004). Найдите все пары целых чисел x и y, удовлетворяющие уравнению -3xy-10x+13y+35=0.

Omeem: (6;-5); (4;5); (-4;-3).

3.4. Решите в целых числах уравнение $5x^2 + 5y^2 + 8xy + 2y - 2x + 2 = 0$.

Ответ: (1;-1).

3.5. Решите в целых числах уравнение $x^2 - 6xy + 13y^2 = 100$.

Omeem: (10;0); (-10;0); (1;3); (17;3); (18;4); (6;4); (-1;-3); (-17;-3); (-6;-4); (15;5); (-15;-5).

3.6. Уравнение $2xy = x^2 + 2y$ решите в натуральных числах.

Omeem: x = y = 2.

3.7. Найдите все пары целых чисел, сумма которых равна их произведению.

Первое решение. Пусть целые числа x и y таковы, что x + y = xy, тогда отсюда

получим
$$y = \frac{x}{x-1}$$
.

Поскольку x и x-1 два последовательных целых числа, то число y может быть целым только тогда, когда $x-1=\pm 1$, т.е. x=0 или x=2. Тогда

получаем y = 0 или y = 2 соответственно.

Второе решение. Приведем уравнение x + y = xy к виду x(y-1) - y + 1 = 1 или (x-1)(y-1) = 1. Отсюда получаем две системы.

1)
$$\begin{cases} x-1=1 \\ y-1=1 \end{cases} \iff \begin{cases} x=2 \\ y=2 \end{cases}$$

2)
$$\begin{cases} x-1=-1 \\ y-1=-1 \end{cases} \Leftrightarrow \begin{cases} x=0 \\ y=0 \end{cases}$$

Ombem: x = 0, y = 0; x = 2, y = 2.

3.8. Решите уравнение xy + x - y = 2 в целых числах.

Указание. (x-1)(y+1) = 1.

Omeem: x = 2, y = 0;

3.9. (ММО, 1941, 9-10 классы). Решите в целых числах уравнение $x + y = x^2 - xy + y^2$.

Указание. Преобразуйте уравнение к виду $(x-1)^2 + (y-1)^2 + (x-y)^2 = 2$. Ответ: (0;0);(1;0);(0;1);(2;1);(1;2);(2;2).

3.10. Решите в натуральных числах систему уравнений $\begin{cases} x + y + z = 14, \\ x + yz = 19. \end{cases}$

Решение. Вычитая из второго уравнения системы первое, получим:

yz - y - z = 5, или yz - y - z + 1 = 6, (y-1)(z-1) = 6. Будем искать лишь решения, удовлетворяющие условию y < z (остальные решения получаются перестановкой значений y и z). При таком соглашении последнее уравнение сводится к одной из следующих двух систем:

$$\begin{cases} y - 1 = 1 \\ z - 1 = 6 \end{cases}$$
 или
$$\begin{cases} y - 1 = 2 \\ z - 1 = 3. \end{cases}$$

Из первой системы y = 2, z = 7, а из второй y = 3, z = 4. Подставляя эти значения y и z в одно из уравнений заданной системы, получим соответствующие им значения x = 5 или x = 7.

Ombem: (5;2;7);(5;7;2);(7;3;4);(7;4;3).

3.11. (Московская математическая регата, 2005/2006, 11 класс). Найдите все целые решения уравнения:

$$x^2 - 2xy + 2x - y + 1 = 0.$$

Первое решение. Преобразуем данное уравнение, выразив переменную y через переменную x: $y(2x+1) = x^2 + 2x + 1$;

$$y = \frac{x^2}{2x+1} + 1$$
, так как $2x + 1 \neq 0$ при

любых целых значениях x. Для того, чтобы y было целым, необходимо и

достаточно, чтобы дробь $\frac{x^2}{2x+1}$

принимала целые значения.

Заметим, что HOД(2x+1;x) = HOД (x+1;x) = 1, поэтому числа x^2 и 2x+1-взаимно простые. Следовательно,

выражение $\frac{x^2}{2x+1}$ принимает целые

значения, если $2x+1=\pm 1$. Таким образом, решения данного уравнения: $x=0;\ y=1$ и $x=-1;\ y=0$.

Второе решение. Запишем данное уравнение как квадратное относительно переменной x: $x^2-2(y-1)x-(y-1)=0$. Его решения: $x=(y-1)\pm\sqrt{D'}$, где $D'=(y-1)^2+(y-1)=(y-1)y$.

Для того, чтобы x было целым, необходимо и достаточно, чтобы D' являлось квадратом целого числа. Это возможно только, если $D'=0 \iff y=1$ или y=0, так как в остальных случаях число (y-1)y находится в интервале между двумя соседними квадратами: $(y-1)^2$ и y^2 . Если y=1, то x=0; если y=0, то x=-1.

Тремье решение. Преобразуем данное уравнение, выделив квадрат трехчлена: $(x^2 + y^2 + 1 - 2xy + 2x - 2y) - y^2 + y = 0$ \Leftrightarrow $(x - y + 1)^2 = (y - 1)y$. По доказанному выше (y - 1)y является квадратом целого числа тогда, и только тогда, когда y = 0 или y = 1. Если y = 1, то x = 0; если y = 0, то x = -1.

Ответ: x = 0; y = 1 или x = -1; y = 0. **3.12.** (2010) Решите в целых числах уравнение $2x^2 - 2xy + 9x + y = 2$. **Решение.** Преобразуем уравнение: $y(2x-1) = 2x^2 + 9x - 2$. Так как x - целое, то $2x-1 \neq 0$, поэтому выразим y через x:

$$y = \frac{2x^2 + 9x - 2}{2x - 1} = x + 5 + \frac{3}{2x - 1}.$$

Поскольку x и y – целые числа, то число $\frac{3}{2x-1}$ - тоже целое. Значит,

2x-1 делитель 3, т.е.

- 1) 2x-1=1, x=1;
- 2) 2x-1=-1, x=0;
- 3) 2x-1=3, x=2;
- 4) 2x-1=-3, x=-1.

Ombem: (1;9),(2;8),(0;2),(-1;3).

3.13. (2010). Найдите все целые решения уравнения $3x^2 + 4xy - 7y^2 = 13$.

Решение. Разложим левую часть на множители:

$$3x^2 + 4xy - 7y^2 = (x - y)(3x + 7y).$$

Имеем (x-y)(3x+7y) = 13. Поскольку 13 можно представить в виде произведения двух целых чисел с учетом порядка четырьмя способами, то получаем четыре системы:

1)
$$\begin{cases} x - y = 1 \\ 3x + 7y = 13 \end{cases}$$
 2)
$$\begin{cases} x - y = 13 \\ 3x + 7y = 1 \end{cases}$$
 3)
$$\begin{cases} x - y = -1 \\ 3x + 7y = -13 \end{cases}$$
 4)
$$\begin{cases} x - y = -13 \\ 3x + 7y = -1 \end{cases}$$

Целочисленные решения имеют лишь 1-я и 3-я системы.

Ответ: x = 2; y = 1 или x = -2; y = -1.

3.14. (ММО, 1964, 7 класс). При каких натуральных числах a существуют такие натуральные числа x и y, что $x^2 + y^2 = axy$?

Указание. Положим $t=\frac{y}{x}$, тогда t- рациональное число, являющееся корнем уравнения $t^2-at+1=0$. Но тогда $t=\frac{a\pm\sqrt{a^2-4}}{2}$. Число $\sqrt{a^2-4}$ при целом a может быть рациональным только при $a=\pm 2$.

Omeomor 2

Ombem: a = 2.

3.15. (ММО, 1983, 7 класс). Найдите все пары целых чисел (x; y), удовлетворяющих уравнению $x^2 = y^2 + 2y + 13$.

Указание. Представим уравнение в виде $x^2 = (y+1)^2 + 12$ или $x^2 - (y+1)^2 = 12$, (x-y-1)(x+y+1) = 12. Заметив, что каждая скобка — четное число, получаем 4 возможности, оттуда следует ответ.

Ombem: (4;1); (4;-3); (-4;1); (-4;-3).

3.16. Решите в целых положительных числах уравнение

$$2x^2 - xy - y^2 + 2x + 7y = 84.$$

Решение. Рассматривая данное уравнение как квадратное $y^2 + y(x-7) + 84 - 2x - 2x^2 = 0$ относительно y, найдем дискриминант $D = 9x^2 - 6x - 287 = (3x-1)^2 - 288$,

который должен быть точным квадратом, т.е. $(3x-1)^2-288=u^2$. Отсюда следует, что u<3x-1. Положим, u=(3x-1)-k, где k — натуральное число. Тогда получаем: $(3x-1)^2-288=((3x-1)-k)^2$, или $2k(3x-1)=k^2+288$, откуда видно, что k — число четное. Пусть k=2l, где l

$$l(3x-1) = l^2 + 72$$
, или $3x = l + \frac{72}{l} + 1.(*)$

- натуральное число. Тогда находим:

Отсюда видно, что число $\frac{72}{l}$ должно быть натуральным, т.е. l должно быть делителем числа 72. Возможные значения для l: 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. Из них надо взять лишь такие, для которых число $l + \frac{72}{l} + 1$ кратно 3. Этому

условию удовлетворяют лишь числа $l_1 = 2$, $l_2 = 8$, $l_3 = 9$, $l_4 = 36$. Затем из (*) находим для x два значения: 13 и 6. Из исходного уравнения найдем соответствующие (только натуральные) значения y.

Ombem: (13, 20); (6, 0).

4. Уравнения высшей степени

 $x^3 - 3y^3 - 9z^3 = 0$ 4.1. Уравнение решите в целых числах.

Ombem: x = y = z = 0.

4.2. Решите в целых числах уравнение $4x^3 - 2y^3 - z^3 = 0$.

Ответ: (0:0:0).

4.3. Решите уравнение $3x^2 + 4xy - 7y^2 - 13 = 0$

в целых числах.

Omsem: (2;1); (-2;-1).

4.4. Решите в целых числах уравнение $2x^2y^2 + y^2 - 6x^2 - 12 = 0.$

Ответ: (-2;2); (-2;2); (2;-2); (2;2).

4.5. Уравнение $x^3 + 91 = y^3$ решите в целых числах.

Решение. Данное уравнение перепишем в $(y-x)(y^2 + xy + x^2) = 13 \cdot 7.$

Поскольку

$$y^2 + xy + x^2 = \left(y + \frac{x}{2}\right)^2 + \frac{3x^2}{4} \ge 0,$$
 To

возможны только следующие случая:

1)
$$\begin{cases} y - x = 1 \\ y^2 + xy + x^2 = 91 \end{cases} \Leftrightarrow \begin{cases} \begin{cases} x = 5 \\ y = 6 \end{cases} \\ \begin{cases} x = -6 \\ y = -5 \end{cases} \end{cases}$$
2)
$$\begin{cases} y - x = 7 \\ y^2 + xy + x^2 = 13 \end{cases} \Leftrightarrow \begin{cases} \begin{cases} x = -3 \\ y = 4 \end{cases} \\ \begin{cases} x = -4 \\ y = 3 \end{cases} \end{cases}$$

3)
$$\begin{cases} y - x = 13 \\ y^2 + xy + x^2 = 7 \end{cases}$$
 Нет решений.
4) $\begin{cases} y - x = 91 \\ y^2 + xy + x^2 = 1 \end{cases}$ Нет решений.

4)
$$\begin{cases} y - x = 91 \\ y^2 + xy + x^2 = 1 \end{cases}$$
 Нет решений.

Ombem: (5;6), (-6;-5), (-3;4), (-4;3).

4.6. Какие целые положительные числа могут удовлетворять уравнению x + y + z = xyz?

Решение. Для определенности пусть Из уравнения $x \le y \le z$. данного

получаем $3z \ge xyz$. Рассмотрим случай равенства 3z = xyz, xy = 3, откуда

$$\begin{cases} x = 1 \\ y = 3 \end{cases}$$
 или
$$\begin{cases} x = 3 \\ y = 1. \end{cases}$$
 При этих значениях x

и у получаем из данного уравнения z = 2. Все эти значения не соответствуют нашему условию $x \le y \le z$.

Теперь пусть 3z > xyz, xy < 3. Поскольку $0 < x \le y$, возможны только следующие варианты: x = 1, y = 1 или x = 1, y = 2. Для первого варианта получаем уравнения z = 0, данного соответствует условию задачи. Для второго варианта z = 3. Таким образом, условии x < y < zуравнение имеет одно решение x = 1, y = 2, z = 3. Все остальные решения получаются из этого перестановками значений неизвестных x, y, z.

Omeem: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3;1;2),(3;2;1).

4.7. Решите в целых числах уравнение $19x^3 - 84y^2 = 1984$.

Указание. Перепишите уравнение в виде $19(x^3-100) = 84(1+y^2)$. Правая часть кратна 7, поэтому $x^3 - 2$ кратно 7. Но кубы чисел при делении на 7 не дают в остатке 2.

Ответ: нет решений.

4.8. (2010). Найдите все решения в натуральных числах $x(y+1)^2 = 243 y$.

Решение. Перепишем данное уравнение в виде (учитывая, что $x \neq 0$; $y \neq 0$)

$$x = \frac{243 \, y}{\left(y+1\right)^2}.$$

Для того чтобы x было целым числом, знаменатель $(y+1)^2$ должен быть одним из делителей числа 243, потому что y не может иметь общие множители с y+1. Поскольку $243 = 3^5$, то 243 делится только на следующие числа, являющиеся точными квадратами: 1^2 , 3^2 , 9^2 . Таким образом, число $(y+1)^2$ должно быть равно 1, 9 или 81, откуда находим, что у равно 8 или 2. Значит,

$$x = \frac{243 \cdot 8}{81} = 24$$
 или $x = \frac{243 \cdot 2}{9} = 54$.

Ответ: x = 24; y = 8 или x = 54; y = 2. **4.9.** (2010). Решите в целых числах уравнение $m \cdot n^2 = 10^5 n + m$.

Решение. Перепишем данное уравнение в виде $m(n^2 - 1) = 10^5 n$. (1)

Если n = 0, то m = 0. Первое решение уравнения (1) найдено.

Если $n \neq 0$, то и $m \neq 0$. Заметим, что если пара чисел $(m_0; n_0)$ решение уравнения (1), то и пара $(-m_0; -n_0)$ - тоже решение уравнения (1).

Пусть n > 0 и m > 0, тогда $n \ne 1$. Перепишем уравнение (1) в виде $m(n-1)(n+1) = 10^5 n$. (2)

Так как ни n-1, ни n+1 не делятся на n, то m делится на n. Обозначим m=np. Разделив равенство (2) на n, имеем:

$$p(n-1)(n+1) = 10^5$$
. (3)

Число n не может быть четным, так как в этом случае два соседних нечетных числа n-1 и n+1 не могут являться степенями числа 5. Следовательно, число n нечетное, а n-1 и n+1 - два соседних четных числа, не имеющих простых делителей, кроме 2 и 5.

Выпишем первые два столбца четных чисел так, чтобы в первом столбце стояли числа, не имеющие делителей, кроме 2 и 5.

n-1	n+1
2	4
8	10
20	22
32	34
50	52
80	82
128	130
200	202

При этом во втором столбце, начиная с третьей строки, все числа имеют простой делитель, кроме 2 и 5. Это означает, что из выписанных множителей n-1 и n+1 только две пары чисел удовлетворяют условию, т.е. n=3 и n=9 отвечают

условиям задачи. Для последней строки таблицы из равенства (3) получим p < 5, что невозможно. Поэтому поиск значений n закончен.

При n=3 из равенства (3) получим, что p=12500, тогда m=pn=37500.

При n=9 из равенства (3) получим, что p=1250, тогда m=pn=11250.

Ответ: m = -1 1 ; 2n = 5-9(или m = -37500; n = -3 или m = 0; n = 0 или m = 37500; n = 3 или m = 11250; n = 9.

4.10. (2010). Найдите все натуральные числа x и y, для которых выполняется равенство $x^4 + x^3 + x^2 + x + 1 = y^2$.

Решение. Представим левую часть в виде $\left(x^2 + \frac{x}{2} + \frac{3}{8}\right)^2 + \frac{5}{8}x + \frac{55}{64} = y^2$. Умножая обе части уравнения на 64, получаем $\left(8x^2 + 4x + 3\right)^2 + 40x + 55 = \left(8y\right)^2$.

Таким образом, $8y > 8x^2 + 4x + 3$, $2y \ge 2x^2 + x + 1$. Умножим обе части исходного равенства на 4, а затем, используя

$$4y^2 \ge \left(2x^2 + x + 1\right)^2 = 4x^4 + 4x^3 + 5x^2 + 2x + 1,$$
 будем иметь $4x^4 + 4x^3 + 4x^2 + 4x + 4 \ge 4x^4 + 4x^3 + 5x^2 + 2x + 1,$ или $x^2 - 2x - 3 \le 0$, откуда $x \le 3$. Осталось проверить для x значения 1, 2, 3.

Ombem: x = 3; y = 11.

Теорема. Если $ab = d^2$, a, b и d — натуральные числа, и числа a и b взаимно просты, то a и b — точные квадраты.

4.11. (ММО, 2002, 9 класс), (МИОО, 2010). Решите в целых числах уравнение $m^4 - 2n^2 = 1$.

Решение. Если (m;n) - решение данного уравнения, то (-m;n), (m;-n) и (-m;-n) тоже решения. Поэтому будем искать только неотрицательные решения. Из записи $m^4 = 2n^2 + 1$ следует, что m — нечетное число, m = 2t + 1. Перепишем уравнение в виде

 $m^4-1=(m-1)(m+1)(m^2+1)=$ $=2t\cdot(2t+2)\cdot(4t^2+4t+2)=2n^2$. Отсюда $8t\cdot(t+1)\cdot(2t^2+2t+1)=2n^2$, т.е. n-1 четное число, n=2p. Далее получаем уравнение $t\cdot(t+1)\cdot\left(2t(t+1)+1\right)=p^2$. Нетрудно проверить, что числа t, t+1 и 2t(t+1)+1 попарно взаимно просты.

Действительно, пусть, например, $d \mid t+1$ и $d \mid 2t(t+1)+1$, тогда d делит и 2t(t+1), а, значит, и разность (2t(t+1)+1)-(2t(t+1)). Взаимная простота двух остальных пар доказывается аналогично.

Произведение этих взаимно простых чисел — полный квадрат. Согласно теореме каждое из них также является полным квадратом.

Итак, t и t+1 - полные квадраты. Это возможно только при t=0. Действительно, если $t=\alpha^2$, $t+1=\beta^2$, где $\alpha \geq 0$, $\beta \geq 0$, то $(\beta-\alpha)(\beta+\alpha)=1$, поэтому $\beta-\alpha=1$, $\beta+\alpha=1$, так что $\alpha=0$, следовательно, t=0. Тогда и p=0. Значит, $m=\pm 1$; n=0.

Omsem: $m = \pm 1$; n = 0.

4.12. (2010). Существуют ли рациональные числа x, y, u, v, которые удовлетворяют уравнению

$$(x + y\sqrt{2})^6 + (u + v\sqrt{2})^6 = 7 + 5\sqrt{2}$$
?

Решение. Так как $(x + y\sqrt{2})^6 =$

Решение. Так как
$$(x + y\sqrt{2}) =$$

= $x^6 + 6x^5(y\sqrt{2}) + 15x^4(y\sqrt{2})^2 + 20x^3(y\sqrt{2})^3 +$

$$+15x^{2}(y\sqrt{2})^{4} + 6x(y\sqrt{2})^{5} + (y\sqrt{2})^{6} =$$

$$= A + B\sqrt{2},$$

$$(x - y\sqrt{2})^{6} =$$

$$= x^{6} - 6x^{5}(y\sqrt{2}) + 15x^{4}(y\sqrt{2})^{2} - 20x^{3}(y\sqrt{2})^{3} +$$

$$+15x^{2}(y\sqrt{2})^{4}-6x(y\sqrt{2})^{5}+(y\sqrt{2})^{6}=$$

= $A-B\sqrt{2}$, то выполняется

$$(x - y\sqrt{2})^6 + (u - v\sqrt{2})^6 = 7 - 5\sqrt{2}.$$

Ho $7 - 5\sqrt{2} < 0$, а левая часть положительная. Противоречие.

Следовательно, исходного равенства быть не может.

Ответ: таких чисел нет.

4.13. (ММО, 1972, 9 класс). Существуют ли рациональные числа a, b, c, d, которые удовлетворяют уравнению $\left(a+b\sqrt{2}\right)^{2n}+\left(c+d\sqrt{2}\right)^{2n}=5+4\sqrt{2}$ (где n — натуральное число)?

Ответ: таких чисел нет.

4.14. (2010). Найдите наименьшее и наибольшее натуральные значения n, при которых уравнение

$$(x^2 + y^2)^{2010} = x^n y^n$$

имеет натуральные решения.

Решение. При любом *n* пара x = 1, y = 1 не является решением. Поэтому $(xy)^n = (x^2 + y^2)^{2010} \ge (2xy)^n > (xy)^{2010}$.

Значит, n > 2010.

Предположим, $x \neq y$. Тогда найдется простое число p, такое что $x = p^k a$, $y = p^m b$, и числа a и b не делятся на p. Для определенности можно считать, что $k > m \ge 0$.

Тогда
$$(p^{2k}a^2 + p^{2m}b^2)^{2010} = (p^{k+m}ab)^n;$$
 $(p^{2(k-m)}a^2 + b^2)^{2010} = a^nb^np^{n(k+m)-2m\cdot 2010}.$ (*) Из условий $n > 2010$ и $k > m$ получаем: $n(k+m) - 2m\cdot 2010 = (nk-2010m) + m(n-2010) >$

Значит, правая часть равенства (*) – целое число, которое делится на p. Левая часть на p не делится. Противоречие.

Пусть теперь x=y, тогда из равенства $(x^2+x^2)^{2010}=(x^2)^n$ получаем: $x^{n-2010}=2^{1005}$. Откуда $x=2^q$, q=0,1,2,... и q(n-2010)=1005.

Поэтому n-2010 натуральный делитель числа 1005. По условию нас интересуют только наименьшее и наибольшее возможное значение n. Поэтому нужно взять n-2010=1 и n-2010=1005, откуда n=2011 и n=3015. При n=2011 $x=y=2^{1005}$, при n=3015 x=y=2.

Ответ: 2011; 3015.

4.15. (2010). Найдите наименьшее и наибольшее натуральные значения n, при которых уравнение

$$\frac{2012 \ln(x^2 + y^2)}{n} = \ln(xy)$$

имеет натуральные решения.

Указание. Привести уравнение к виду $(x^2 + y^2)^{2012} = x^n y^n$

Ответ: 2013; 3018.

4.16. (ММО, 1958, 10 класс). Решите в целых положительных числах уравнение $x^{2y} + (x+1)^{2y} = (x+2)^{2y}$.

Указание. Если y = 1, то x = 3 (второй корень квадратного уравнения x = -1отрицателен). Пусть y > 1. Числа x и x+2 одной четности, поэтому x+1=2k. Получаем: $(2k-1)^{2y} + (2k)^{2y} = (2k+1)^{2y},$ откуда несложно увидеть (раскрыв скобки), что y кратно k при y > 1. Разделив теперь обе части уравнения на получим:

$$2 > \left(1 - \frac{1}{2k}\right)^{2y} + 1 = \left(1 + \frac{1}{2k}\right)^{2y} > 1 + \frac{2y}{2k}.$$

Отсюда y < k, а потому y не может делиться на k. Значит, при y > 1 решений нет.

Ombem: x = 3; y = 1.

4.17. (МГУ, 1989). Найдите все целые числа x и y, удовлетворяющие равенству $9x^2y^2 + 6xy^2 - 9x^2y + 2x^2 +$

 $+ y^2 - 18xy + 7x - 5y + 6 = 0.$

Решение. Разложим левую часть уравнения на множители

$$y^{2}(3x+1)^{2} - y(3x+1)(3x+5) + 2x^{2} + 7x + 6 =$$

$$= \left(y(3x+1) - \frac{3x+5}{2}\right)^2 - \left(\frac{x+1}{2}\right)^2 =$$

$$= \left(y(3x+1) - 2x - 3\right)\left(y(3x+1) - x - 3\right)$$

=(y(3x+1)-2x-3)(y(3x+1)-x-2).

Откуда следует, что искомые числа удовлетворяют хотя бы одному уравнений

y(3x+1)-2x-3=0или y(3x+1)-x-2=0, которые приводятся виду (3x+1)(3y-1) = 5(3x+1)(3y-2) = 7. Решая эти уравнения в целых числах, получаем четыре пары чисел.

Ombem: (0;-2),(-2;0),(0;3),(2;1).

4.18. (МГУ, 1989). Найдите все целые числа x и y, удовлетворяющие равенству $15x^2y^2 - 8yx^2 + 28y^2x + x^2 + 5y^2 -$ -38xy + 8x - 24y + 16 = 0.

Omsem: (-2,2),(-4,0),(0,4).

4.19. (МГУ, 1979). Найдите все тройки целых чисел (x; y; z), для каждой из которых выполняется соотношение $3(x-3)^2 + 6y^2 + 2z^2 + 3y^2z^2 = 33.$

Решение. Из условия следует, что $3(x-3)^2 \leq 33$, т.е. $(x-3)^2 \le 11$.

Поскольку $(x-3)^2$ является квадратом целого числа x-3, то $(x-3)^2$ равно либо 0, либо 1, либо 4, либо 9. Перепишем исходное уравнение $3(x-3)^2 + (z^2+2)(3y^2+2) = 37.$

Если $(x-3)^2 = 0$, то $(z^2+2)(3y^2+2) = 37$. Так как 37 – число простое, то последнее равенство выполняться не может.

Если $(x-3)^2 = 1$, то $(z^2+2)(3y^2+2) = 34$. $z^2 + 2 \ge 2$, $3y^2 + 2 \ge 2$, To Поскольку возможны две системы

$$\begin{cases} z^2 + 2 = 2 \\ 3y^2 + 2 = 17 \end{cases}$$
 или
$$\begin{cases} z^2 + 2 = 17 \\ 3y^2 + 2 = 2, \end{cases}$$
 которые

не имеют решений в целых числах.

 $(x-3)^2 = 4$ $(z^2+2)(3y^2+2)=25$, откуда следует система

$$\begin{cases} z^2 + 2 = 5 \\ 3y^2 + 2 = 5, \end{cases}$$
 которая не имеет решений

в целых числах.

Если $(x-3)^2 = 9$, т.е. если x = 6 или x = 0, To $(z^2 + 2)(3y^2 + 2) = 10$. Tak kak $z^2 + 2 \ge 2$, $3y^2 + 2 \ge 2$, то отсюда следуют две системы

$$\begin{cases} z^2 + 2 = 5 \\ 3y^2 + 2 = 2 \end{cases}$$
 или
$$\begin{cases} z^2 + 2 = 2 \\ 3y^2 + 2 = 5, \end{cases}$$
 первая из

которых не имеет решений в целых числах. Из второй системы получаем, что z = 0, y = 1, либо z = 0, y = -1.Следовательно, исходному соотношению удовлетворяют четыре тройки чисел.

Ombem: (6;1;0),(6;-1;0),(0;1;0),(0;-1;0).

4.20. (**МГУ**, **1979**). Найдите все тройки целых чисел (x; y; z), для каждой из которых выполняется соотношение $5x^2 + y^2 + 3z^2 - 2yz = 30$. *Ответ*: (1;5;0), (1;-5;0), (-1;5;0), (-1;-5;0).

5. Дробно-рациональные уравнения

5.1. Решите в натуральных числах уравнение $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.

Решение. Поскольку неизвестные x, y, z входят в уравнение симметрично, то можно считать, что $x \le y \le z$. Остальные решения получатся перестановками неизвестных. Тогда

$$1 = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \le \frac{3}{x}$$
, r.e. $x \le 3$.

Очевидно, что x ≠ 1.

Пусть x = 2, т.е. $\frac{1}{y} + \frac{1}{z} = \frac{1}{2}$. Также ясно, что $y \neq 2$. Если y = 3, то z = 6. Если y = 4, то z = 4. Если y = 5, то даже $\frac{1}{5} + \frac{1}{5} < \frac{1}{2}$, т.е. других решений при x = 2 нет.

Если x = 3, то $\frac{1}{y} + \frac{1}{z} = \frac{2}{3}$. Пусть y = 3, тогда z = 3. Если y = 4, то даже $\frac{1}{4} + \frac{1}{4} < \frac{2}{3}$, т.е. других решений при x = 3 нет. Следовательно, данное уравнение с учетом перестановок имеет десять решений.

Omeem: (3;3;3); (2;4;4); (4;2;4); (4;4;2); (2;3;6); (2;6;3); (3;2;6); (3;6;2); (6;2;3); (6;3;2).

5.2. Решите в натуральных числах уравнение $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$.

 $У \kappa a s a h u e$. Выразите из уравнения y и исследуйте полученную функцию.

Ответ: (4;4); (6;3); (3;6).

5.3. (МИОО, 2010). Найдите все пары натуральных чисел разной четности, удовлетворяющие уравнению $\frac{1}{m} + \frac{1}{n} = \frac{1}{12}$

Решение. Пусть m < n. Приведем уравнение к виду $12m + 12n = mn \iff mn - 12m - 12n + 12^2 = 12^2 \iff (m - 12)(n - 12) = 12^2$, причем числа m - 12 и n - 12 - разной четности.

В качестве возможного разложения $12^2 = 2^4 \cdot 3^2 = pq$, где p – нечетно, а q – четно, имеем следующие варианты:

1)
$$\begin{cases} p=1 \\ q=144 \end{cases} \Leftrightarrow \begin{cases} m-12=1 \\ n-12=144 \end{cases} \Leftrightarrow \begin{cases} m=13 \\ n=156 \end{cases}$$

2)
$$\begin{cases} p=3 \\ q=48 \end{cases} \Leftrightarrow \begin{cases} m-12=3 \\ n-12=48 \end{cases} \Leftrightarrow \begin{cases} m=15 \\ n=60 \end{cases}$$

3)
$$\begin{cases} p = 9 \\ q = 16 \end{cases} \Leftrightarrow \begin{cases} m - 12 = 9 \\ n - 12 = 16 \end{cases} \Leftrightarrow \begin{cases} m = 15 \\ n = 60 \end{cases}$$

4)
$$\begin{cases} p < 0 \\ q < 0 \end{cases} \Leftrightarrow \begin{cases} -12 < m - 12 < 0 \\ -12 < n - 12 < 0 \end{cases} \Rightarrow (m - 12)(n - 12) < 12^{2}.$$

Неизвестные m и n входят в уравнение симметрично. Поэтому получаем ответ.

Omsem: (13;156); (15;60); (21;28), (156;13); (60;15); (28;21).

5.4. (МИОО, 2010). Решите в натуральных числах уравнение $\frac{1}{m} + \frac{1}{n} = \frac{1}{25}$, где m > n. Ответ: m = 150; n = 30 или m = 650; n = 26.

6. Иррациональные уравнения

6.1. (Московская математическая регата, 2002/2003, 11 класс). Найдите все целые решения уравнения

$$\sqrt{x + \sqrt{x}} = y - 2002.$$

Решение. Исходное уравнение равносильно системе:

$$\begin{cases} x + \sqrt{x} = (y - 2002)^2 \\ y \ge 2002 \end{cases}$$

По условию, x — целое число, поэтому $t = \sqrt{x}$ - также целое.

Чтобы уравнение $t^2 + t - (y - 2002)^2 = 0$ имело целые решения, необходимо, чтобы дискриминант $D = 1 + 4(y - 2002)^2$ являлся полным квадратом. Так как второе слагаемое, в свою очередь, при всех целых значениях ν является полным квадратом, то следующее за ним натуральное число является квадратом тогла только И тогда, когда $(y-2002)^2=0 \Leftrightarrow y=2002.$ Откуда t = 0 или t = -1, то есть, x = 0.

Ombem: x = 0; y = 2002.

6.2. Решите в целых числах уравнение $\sqrt{x} + \sqrt{y} = \sqrt{98}$.

Решение. Из уравнения видно, что $0 \le x \le 98$, $0 \le y \le 98$. Представим уравнение в виде $\sqrt{y} = \sqrt{98} - \sqrt{x}$ и возведем обе части уравнения в квадрат: $y = 98 + x - 2\sqrt{98x}$, $y = 98 + x - 14\sqrt{2x}$. Отсюда $2x = 4a^2$, $x = 2a^2$, где a — целое неотрицательное число. Так как $x \le 98$,

Для каждого из значений a получаем значения x, и затем значения y.

To $2a^2 \le 98$, $a^2 \le 49$, $0 \le a \le 7$.

Omsem: (0;98); (2;72); (8;50); (18;32); (32;18); (50;8); (72;2); (98;0).

7. Показательные уравнения

7.1. (2010). Найдите все пары натуральных чисел m и n, являющиеся решениями уравнения $2^m - 3^n = 1$.

Решение. При любом k число $3^{2k}+1$ при делении на 8 дает остаток 2, а число $3^{2k+1}+1$ при делении на 8 дает остаток 4. Так как при $m \ge 3$ число 2^m делится на 8 без остатка, то равенство $3^n+1=2^m$ возможно при m=1 или m=2.

Если m=1, то получаем n=0.

Если m=2, то получаем n=1.

Ombem: m = 2, n = 1.

7.2. (2010). Найдите все пары натуральных чисел m и n, являющиеся решениями уравнения $3^n - 2^m = 1$.

Решение. Пусть n — четное число, т.е. n=2k. Тогда $2^m=(3^k-1)(3^k+1)$. Правая часть — произведение двух последовательных четных чисел, каждое из которых является степенью числа 2. Значит, $3^k-1=2$ и $3^k+1=4$, откуда k=1 и n=2. Тогда m=3.

Пусть теперь n — нечетное число. Нечетная степень тройки при делении на 4 дает остаток 3. Значит, $3^n - 1$ делится на 4 с остатком 2. Так как при $m \ge 2$ число 2^m делится на 4 без остатка, то равенство $2^m = 3^n - 1$ возможно в случае m = 1. Тогда n = 1.

Ответ: m = 3, n = 2 или m = n = 1.

7.3. (2010). Решите в натуральных числах уравнение $2^x - 15 = y^2$.

Решение. Рассмотрим два случая.

1) x = 2k + 1 (x — нечетное число). Поскольку 2^2 при делении на 3 дает в остатке 1, то и $2^{2k} = \left(2^2\right)^k$ дает в остатке 1, а $2^{2k+1} = 2 \cdot 2^{2k}$ дает в остатке 2. Число 15 делится на 3, следовательно, левая часть уравнения при делении на 3 дает в остатке 2. Правая часть (квадрат числа) дает при делении на 3 в остатке 0 или 1 (докажите). Таким образом, равенство невозможно (левая и правая части дают при делении на 3 разные остатки).

2) x = 2k. Тогда $2^{2k} - y^2 = 15$, откуда $(2^k - y)(2^k + y) = 15$. Оба множителя слева целые и положительные (так как второй множитель положителен), второй больше первого. Возможны два варианта:

$$\begin{cases} 2^{k} - y = 1 \\ 2^{k} + y = 15 \end{cases} \quad \mathbf{H} \quad \begin{cases} 2^{k} - y = 3 \\ 2^{k} + y = 5 \end{cases}$$

Решая эти системы, получаем ответ.

Ombem: (4;1);(6;7).

7.4. Решите в целых числах уравнение $2^x - 1 = y^2$.

Omeem: (1;1);(1;-1);(0;0).

7.5. (2010). Решите в целых числах уравнение $3^n + 8 = x^2$.

Ответ: n = 0; x = 3 или n = 0; x = -3.

7.6. (2010). Решите в целых числах уравнение $1+2^k+2^{2k+1}=n^2$.

Решение. При k = 1 получаем уравнение $n^2 = 11$, которое не имеет решений в целых числах

Если k=0, то $n=\pm 2$.

При k = -1 уравнение не имеет решений в целых числах.

Если k < -1, то уравнение не имеет решений, так как левая часть данного уравнения принимает значения из промежутка (1; 2).

Пусть $k \ge 2$. Как известно, четные степени двойки дают при делении на 3 остаток 1, нечетные -2. Отсюда следует, что $1+2^{2k+1}$ делится на 3 без остатка, а число $1+2^k+2^{2k+1}$ при делении на 3 дает такой же остаток, как у 2^k . С другой стороны, квадраты целых чисел не могут давать при делении на 3 остаток 2. Таким образом, k — четное. Положим k = 2d, $d \in N$ и перепишем уравнение в виде $1+4^d+2\cdot 4^{2d}=n^2$. Отсюда следует, что n — нечетное, т.е. n=2x+1, $x \in N$. Получаем уравнение $1+4^d+2\cdot 4^{2d}=4x^2+4x+1$;

$$4^{d}(1+2\cdot 4^{d})=4(x^{2}+x);$$

 $4^{y}(1+8\cdot 4^{y})=x(x+1),$ где y=d-1. Причем y>0, так как при d=1, т.е. y=0 последнее уравнение не имеет решений.

Из чисел x и x+1 только одно четное, и оно делится на 4^y .

Если $x = m \cdot 4^y$ (причем m – нечетное, $m \in N$), то имеем $4^y (1 + 8 \cdot 4^y) = m \cdot 4^y (m \cdot 4^y + 1)$;

 $1+8\cdot 4^y=m^2\cdot 4^y+m;$ $(8-m^2)\cdot 4^y=m-1.$ Сравнивая знаки левой и правой частей

последнего уравнения, получаем одно нечетное m=1, которое не является решением.

Если $x+1 = m \cdot 4^y$ (причем m — нечетное, $m \in N$), то имеем $4^y (1+8 \cdot 4^y) = (m \cdot 4^y - 1)m \cdot 4^y$;

$$1+8\cdot 4^y=m^2\cdot 4^y-m; \quad (m^2-8)\cdot 4^y=m+1.$$

Выражение $m^2 - 8$ неотрицательно при натуральных $m \ge 3$. Если m = 3, то y = 1 (что приводит к решению исходного

уравнения $k=4; n=\pm 23$). При натуральных $m \ge 4$ будет $m^2-8>m+1$, и решений нет.

 $Omsem: k = 0; n = \pm 2$ или $k = 4; n = \pm 23$.

7.7. (ММО, 1998, 11 класс), (МИОО, 2010). Решите уравнение $3^m + 4^n = 5^k$ в натуральных числах.

Omeem: m = n = k = 2.

8. Уравнения смешанного типа

8.1. (МИОО, 2010). Найдите все пары натуральных k и n таких, что k < n и

$$\left(\frac{1}{n}\right)^k = \left(\frac{1}{k}\right)^n.$$

Указание. Приведите уравнение к виду $(n)^k = (k)^n$.

Omeem: k = 2, n = 4.

8.2. (МГУ, 1979). Найдите все целые корни уравнения

$$\cos\left(\frac{\pi}{8}\left(3x - \sqrt{9x^2 + 160x + 800}\right)\right) = 1.$$

Решение. Из данного уравнения получаем

$$\frac{\pi}{8} \left(3x - \sqrt{9x^2 + 160x + 800} \right) = 2\pi n, \quad n \in \mathbb{Z}.$$

Отсюда приходим к иррациональному уравнению $\sqrt{9x^2 + 160x + 800} = 3x - 16n$, которое равносильно системе

$$\begin{cases} 9x^2 + 160x + 800 = (3x - 16n)^2, \\ 3x - 16n \ge 0; \ x, n \in Z \end{cases}$$

Уравнение системы приведем к виду $x(3n+5) = 8n^2 - 25$. (*)

Так как
$$8n^2 - 25 = 8\left(n^2 - \frac{25}{9}\right) - \frac{25}{9} =$$

$$=\frac{8}{9}(3n+5)(3n-5)-\frac{25}{9}$$
, то уравнение (*)

имеет вид
$$8(3n+5)(3n-5)-9x(3n+5)=25$$
 или $(3n+5)(8(3n-5)-9x)=25$. Последнее равенство означает, что $3n+5$ является делителем числа 25 , т.е. $3n+5$ есть одно

из чисел $\pm 1, \pm 5, \pm 25$. Непосредственной проверкой убеждаемся, что это возможно только если n равняется одному из

чисел $n_1=-10,$ $n_2=-2,$ $n_3=0.$ Соответствующие значения x находятся из равенства (*): $x_1=-31,$ $x_2=-7,$ $x_3=-5.$ Условию $3x-16n\geq 0$ удовлетворяют значения $n_1=-10,$ $x_1=-31$ и $x_2=-7,$ $n_2=-2.$

Omsem: $x_1 = -31$, $x_2 = -7$.

8.3. (МГУ, 1979). Найдите все целые корни уравнения

$$\cos\left(\frac{\pi}{10}\left(3x - \sqrt{9x^2 + 80x - 40}\right)\right) = 1.$$

Ответ: −13, −59.

9. Уравнения, содержащие знак факториала

9.1. (МИОО, 2010). Решите в натуральных числах уравнение $n!+5n+13=k^2$, где $n!=1\cdot 2\cdot 3\cdot ...\cdot n$ — произведение всех натуральных чисел от 1 до n.

Решение. Предположим, что $n \ge 5$. Тогда n! делится на 2 и 5, а значит десятичная запись числа в левой части оканчивается на 3 или на 8. Перебор по последней цифре показывает, что квадрат целого числа не может оканчиваться ни на 3, ни на 8.

Наконец, перебирая n от 1 до 4 находим единственное решение.

Ombem: n = 2; k = 5.

9.2. Уравнение x!+y!=(x+y)! решите в целых числах.

Решение. Рассмотрим случай, когда x < y, тогда

x!(1+(x+1)(x+2)...y) = x!(x+1)(x+2)...(x+y). Поделив обе части этого уравнения на x!, легко заметить, что правая часть делится на x+1, а левая не делится, т.е. в этом случае данное уравнение не имеет решений в целых числах. Аналогично рассматривается случай, когда x>y. Пусть x=y, т.е. 2x!=(2x)! Поделив обе части этого уравнения на x!, получим $2=(x+1)(x+2)\cdot...\cdot 2x$, т.е. x=1, а следовательно, и y=1.

Omsem: x = 1, y = 1.

9.3. (Московская математическая регата, 2003/2004, 11 класс). Найдите все натуральные значения n, для которых выполняется равенство: $n^3 - n = n!$.

Решение. Запишем данное уравнение в виде

 $n(n-1)(n+1) = n(n-1)(n-2)(n-3)...2 \cdot 1.$

Так как n=1 не является его решением, то разделим обе части уравнения на n(n-1). Получим, $n+1=(n-2)(n-3)...2\cdot 1.$ Проверяя последовательные натуральные значения начиная с n=2, получим, что решением уравнения является n=5. Так n > 5как для всех верно, что n+1 < 2n-4 = 2(n-2), TO $n+1 < (n-2) \cdot 2 < (n-2)(n-3) \dots 2 \cdot 1$,

поэтому других натуральных решений данное уравнение не имеет.

Omeem: n = 5.

10. Уравнения с простыми числами

10.1. Уравнение $x^2 - 2y^2 = 1$ решите в простых числах.

Решение. Так как $2y^2$ - четное число, то x — нечетно, и потому число $2y^2 = x^2 - 1 = (x - 1)(x + 1)$ делится на 4. Следовательно, y — четное число, и поскольку x и y должны быть простыми числами, то y = 2, а потому x = 3.

Ombem: x = 3, y = 2.

10.2. Решите в простых числах уравнение $x^y + 1 = z$.

Решение. Число z больше 2, так как если z = 2, то x = 1, а это не возможно. Тогда z нечетно, а следовательно, число x четно. Но x - простое, поэтому x = 2. Получаем уравнение: $2^y + 1 = z$.

Если y нечетно, то сумма $2^y + 1$ делится на 3, причем частное от такого деления больше 1; но в этом случае z составное. Значит, число y четное, т.е. y = 2. Находим z = 5.

Omsem: x = 2, y = 2, z = 5.

11. Неразрешимость уравнений

11.1. Докажите, что уравнение x!+y!=10z+9 не имеет решений в натуральных числах.

Решение. Так как правая часть уравнения — нечетное число, то и левая часть должна быть нечетным числом. Поэтому или x, или y меньше 2. Пусть для определенности, x=1, т.е. y!=10z+8. Правая часть последнего равенства не делится на 5, а потому $y \le 4$, но ни одно из натуральных чисел, которые удовлетворяют этому неравенству, не служат решением данного уравнения. Итак, данное равнение не имеет решений в натуральных числах.

11.2. (BMO, 1992, 9 класс). Докажите, что уравнение $x^3 + y^3 = 4(x^2y + xy^2 + 1)$ не имеет решений в целых числах.

Решение. Перепишем уравнение в виде $(x+y)^3 = 7(x^2y + xy^2) + 4$. Так как куб целого числа не может давать остаток 4 при делении на 7, то уравнение не имеет решений в целых числах.

Замечание. Другие решения задачи можно получить, рассматривая остатки, которые могут давать числа x и y при делении на 4, или заметив, что из уравнения следует, что x+y - делитель числа 4.

11.3. (ММО, 1946, 8-9 классы). Докажите, что выражение

 $x^5 + 3x^4y - 5x^3y^2 - 15x^2y^3 + 4xy^4 + 12y^5$ не равно 33 ни при каких целых значениях x и y.

Указание. Данное выражение преобразуйте κ виду (x-2y)(x-y)(x+y)(x+2y)(x+3y).

Полученные сомножители попарно различны. Но число 33 нельзя разложить более чем на 4 различных сомножителя.

11.4. (ММО, 1949, 7-8 классы). Докажите, что равенство $x^2 + y^2 + z^2 = 2xyz$ для целых чисел x, y, z возможно только при x = y = z = 0.

Указание. Правая часть равенства всегда делится на более высокую степень двойки, чем левая.

11.5. Существуют ли целые числа m и n, удовлетворяющие уравнению

 $m^2 + 2010 = n^2$?

Указание. Не существуют, так как $m^2 - n^2$ нечетно или кратно 4, а 2010 – нет.

11.6. Докажите, что уравнение $x^2 + 1 = 3y$ не имеет решений в целых числах.

Указание. Рассмотреть остатки от деления левой и правой части на 3.